Week 10 - Monday

COMP 2100

Last time

- What did we talk about last time?
- Cycle detection
- Topological sort
- Connectivity
- Minimum spanning tree

Questions?

Project 3

Assignment 5

Shortest Paths

Google Maps

- How does Google Maps find the shortest route from Silicon Valley to Westerville?
- Graph theory, of course!
- It stores a very large graph where locations are nodes and streets (well, parts of streets) are edges

Shortest paths

- We use a weighted graph
- Weight can represent time, distance, cost: anything, really
- The shortest path (lowest total weight) is not always obvious

What's the shortest path?

- Take a moment and try to find the shortest path from A to E.
- The shortest path has cost 14

How can we always find the shortest path?

- On a graph of that size, it isn't hard to find the shortest path
- A Google Maps graph has millions and millions of nodes
- How can we come up with an algorithm that will always find the shortest path from one node to another?

Dijkstra's Algorithm

In 1959, Edsger Dijkstra published an algorithm to find shortest paths

Notation	Meaning	
S	Starting node	
d(v)	The best distance from \boldsymbol{s} to \boldsymbol{v} found so far	
d(u, v)	The direct distance between nodes $m{v}$ and $m{v}$	
S	A set which contains the nodes for which we know the shortest path from s	
V	A set which contains the nodes for which we do not yet know the shortest path from s	
pred(u)	Predecessor of $\boldsymbol{\textit{u}}$ in the shortest path from $\boldsymbol{\textit{s}}$	

Dijkstra's Algorithm

- Start with two sets, S and V:
 - *S* is empty
 - V has all the nodes in it
- 2. Set the distance to all nodes in V to ∞
- 3. Set the distance to the starting node **s** to o
- 4. Find the node **u** in **V** that is closest to **s**
- 5. For every neighbor \mathbf{v} of \mathbf{u} in \mathbf{V}
 - If d(v) > d(v) + d(v,v)
 - Set d(v) = d(u) + d(u,v)
 - Set *pred*(*v*) = *u*
- 6. Move \boldsymbol{u} from \boldsymbol{V} to \boldsymbol{S}
- 7. If **V** is not empty, go back to Step 4

Example for Dijkstra

Node	d(u)	pred(u)
Α	0	-
В	∞	
C	∞	
D	∞	
E	∞	

Sets			
S	V		
	A, B, C, D, E		

Finding the shortest distance from A to all other nodes

Features of Dijkstra

- Always gets the next closest node, so we know there isn't a better way to get there
- Finds the shortest path from a starting node to all other nodes
- Works even for directed graphs
 - Provided that they don't have negative edge weights

Dijkstra's running time

- The normal running time for Dijkstra's is $O(|V|^2)$
 - At worst, we may have to update each node in V for each node v that we find the shortest path to
- A special data structure called a min-priority queue can implement the process of updating priorities faster
 - Total running time of $O(|E| + |V| \log |V|)$
 - Technically faster for sparse graphs
 - Algorithm wizards Fredman and Tarjan created an implementation called a Fibonacci Heap
 - Actually slow in practice

Dijkstra's practice

Matching

Bipartite graphs

- A bipartite graph is one whose nodes can be divided into two disjoint sets X and Y
- There can be edges between set X and set Y
- There are no edges inside set X or set Y
- A graph is bipartite if and only if it contains no odd cycles

Bipartite graph

Maximum matching

- A perfect matching is when every node in set X and every node in set Y is matched
- It is not always possible to have a perfect matching
- We can still try to find a maximum matching in which as many nodes are matched up as possible

Matching algorithm

- 1. Come up with a legal, maximal matching
- 2. Take an **augmenting path** that starts at an unmatched node in X and ends at an unmatched node in Y, alternating the kind of edges it cross (first unmatched, then matched, then unmatched, etc.)
- 3. If there is such a path, switch all the edges along the path from being in the matching to being out and vice versa
- 4. If there's another augmenting path, go back to Step 2

Match the graph

Upcoming

Next time...

- Finish matching
- Stable marriage
- Euler paths and tours

Reminders

- Keep working on Project 3
- Start Assignment 5
- Read sections 6.2 and 6.4