
Week 10 - Monday



 What did we talk about last time?
 Cycle detection
 Topological sort
 Connectivity
 Minimum spanning tree











 How does Google Maps find the shortest route from Silicon 
Valley to Westerville?

 Graph theory, of course!
 It stores a very large graph where locations are nodes and 

streets (well, parts of streets) are edges



 We use a weighted graph
 Weight can represent time, distance, cost: anything, really
 The shortest path (lowest total weight) is not always obvious
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 Take a moment and try to find the shortest path from A to E.
 The shortest path has cost 14 
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 On a graph of that size, it isn't hard to find the shortest path
 A Google Maps graph has millions and millions of nodes
 How can we come up with an algorithm that will always find 

the shortest path from one node to another?



 In 1959, Edsger Dijkstra published an algorithm to find shortest paths

Notation Meaning

s Starting node

d(v) The best distance from s to v found so far

d(u, v) The direct distance between nodes u and v

S
A set which contains the nodes for which we know the shortest 

path from s

V
A set which contains the nodes for which we do not yet know the 

shortest path from s

pred(u) Predecessor of u in the shortest path from s



1. Start with two sets, S and V:
 S is empty
 V has all the nodes in it

2. Set the distance to all nodes in V to ∞
3. Set the distance to the starting node s to 0
4. Find the node u in V that is closest to s
5. For every neighbor v of u in V

▪ If d(v) > d(u) + d(u,v)
▪ Set d(v) = d(u) + d(u,v)
▪ Set pred(v) = u

6. Move u from V to S
7. If V is not empty, go back to Step 4



Node d(u) pred(u)

A 0 -

B 5 A

C 8 A

D ∞

E 16 A

Node d(u) pred(u)

A 0 -

B 5 A

C 7 B

D 11 B

E 16 A

Node d(u) pred(u)

A 0 -

B 5 A

C 7 B

D 10 C

E 16 A

Node d(u) pred(u)

A 0 -

B 5 A

C 7 B

D 10 C

E 14 D

Node d(u) pred(u)

A 0 -

B ∞

C ∞

D ∞

E ∞
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 Always gets the next closest node, so we know there isn’t a 
better way to get there

 Finds the shortest path from a starting node to all other nodes
 Works even for directed graphs
 Provided that they don't have negative edge weights



 The normal running time for Dijkstra's is O(|V|2)
 At worst, we may have to update each node in V for each node v that 

we find the shortest path to
 A special data structure called a min-priority queue can 

implement the process of updating priorities faster
 Total running time of O(|E| + |V| log |V|)
 Technically faster for sparse graphs
 Algorithm wizards Fredman and Tarjan created an implementation 

called a Fibonacci Heap
▪ Actually slow in practice
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 A bipartite graph is one whose nodes can be divided into two 
disjoint sets X and Y

 There can be edges between set X and set Y
 There are no edges inside set X or set Y
 A graph is bipartite if and only if it contains no odd cycles
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 A perfect matching is when every node in set X and every 
node in set Y is matched

 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as 

many nodes are matched up as possible



1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node 

in X and ends at an unmatched node in Y, alternating the kind 
of edges it cross (first unmatched, then matched, then 
unmatched, etc.)

3. If there is such a path, switch all the edges along the path 
from being in the matching to being out and vice versa

4. If there's another augmenting path, go back to Step 2
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Anna Becky Caitlin Daisy Erin Fiona

Adam Ben Carlos Dan Evan Fred





 Finish matching
 Stable marriage
 Euler paths and tours



 Keep working on Project 3
 Start Assignment 5
 Read sections 6.2 and 6.4
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