
Week 10 - Monday

 What did we talk about last time?
 Cycle detection
 Topological sort
 Connectivity
 Minimum spanning tree

 How does Google Maps find the shortest route from Silicon
Valley to Westerville?

 Graph theory, of course!
 It stores a very large graph where locations are nodes and

streets (well, parts of streets) are edges

 We use a weighted graph
 Weight can represent time, distance, cost: anything, really
 The shortest path (lowest total weight) is not always obvious

5

3 4

16

2

8

6

A

B

D

C

E

 Take a moment and try to find the shortest path from A to E.
 The shortest path has cost 14

5

3 4

16

A

B

D

C

E

2

8

6

A

B

C

D

E

 On a graph of that size, it isn't hard to find the shortest path
 A Google Maps graph has millions and millions of nodes
 How can we come up with an algorithm that will always find

the shortest path from one node to another?

 In 1959, Edsger Dijkstra published an algorithm to find shortest paths

Notation Meaning

s Starting node

d(v) The best distance from s to v found so far

d(u, v) The direct distance between nodes u and v

S
A set which contains the nodes for which we know the shortest

path from s

V
A set which contains the nodes for which we do not yet know the

shortest path from s

pred(u) Predecessor of u in the shortest path from s

1. Start with two sets, S and V:
 S is empty
 V has all the nodes in it

2. Set the distance to all nodes in V to ∞
3. Set the distance to the starting node s to 0
4. Find the node u in V that is closest to s
5. For every neighbor v of u in V

▪ If d(v) > d(u) + d(u,v)
▪ Set d(v) = d(u) + d(u,v)
▪ Set pred(v) = u

6. Move u from V to S
7. If V is not empty, go back to Step 4

Node d(u) pred(u)

A 0 -

B 5 A

C 8 A

D ∞

E 16 A

Node d(u) pred(u)

A 0 -

B 5 A

C 7 B

D 11 B

E 16 A

Node d(u) pred(u)

A 0 -

B 5 A

C 7 B

D 10 C

E 16 A

Node d(u) pred(u)

A 0 -

B 5 A

C 7 B

D 10 C

E 14 D

Node d(u) pred(u)

A 0 -

B ∞

C ∞

D ∞

E ∞

5

3 4

16

A

B

D

C

E

2

8

6

Sets

S V

A B, C, D, E

Sets

S V

A, B C, D, E

Sets

S V

A, B, C D, E

Sets

S V

A, B, C, D E

Sets

S V

A, B, C, D, E

Finding the shortest
distance from A to all

other nodes

Sets

S V

A, B, C, D, E

A

 Always gets the next closest node, so we know there isn’t a
better way to get there

 Finds the shortest path from a starting node to all other nodes
 Works even for directed graphs
 Provided that they don't have negative edge weights

 The normal running time for Dijkstra's is O(|V|2)
 At worst, we may have to update each node in V for each node v that

we find the shortest path to
 A special data structure called a min-priority queue can

implement the process of updating priorities faster
 Total running time of O(|E| + |V| log |V|)
 Technically faster for sparse graphs
 Algorithm wizards Fredman and Tarjan created an implementation

called a Fibonacci Heap
▪ Actually slow in practice

A

L

I

F

B

E

G

C

J

H

K

D

5

3

11

6

5

1

4

3

8

5

12

9

2

7

1
95

4

10

2
4

1

 A bipartite graph is one whose nodes can be divided into two
disjoint sets X and Y

 There can be edges between set X and set Y
 There are no edges inside set X or set Y
 A graph is bipartite if and only if it contains no odd cycles

A B C D E F

A B C D E F

X

Y

 A perfect matching is when every node in set X and every
node in set Y is matched

 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as

many nodes are matched up as possible

1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node

in X and ends at an unmatched node in Y, alternating the kind
of edges it cross (first unmatched, then matched, then
unmatched, etc.)

3. If there is such a path, switch all the edges along the path
from being in the matching to being out and vice versa

4. If there's another augmenting path, go back to Step 2

A B C D E F

A B C D E F

X

Y

Anna Becky Caitlin Daisy Erin Fiona

Adam Ben Carlos Dan Evan Fred

 Finish matching
 Stable marriage
 Euler paths and tours

 Keep working on Project 3
 Start Assignment 5
 Read sections 6.2 and 6.4

	COMP 2100
	Last time
	Questions?
	Project 3
	Assignment 5
	Shortest Paths
	Google Maps
	Shortest paths
	What’s the shortest path?
	How can we always find the shortest path?
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Example for Dijkstra
	Features of Dijkstra
	Dijkstra's running time
	Dijkstra's practice
	Matching
	Bipartite graphs
	Bipartite graph
	Maximum matching
	Matching algorithm
	Match the graph
	Upcoming
	Next time…
	Reminders

